class BinaryTree: def __init__(self, root): self.root = root self.leftChild = None self.rightChild = None def setRoot(self, root): self.root = root def getRoot(self): return self.root def getLeftChild(self): return self.leftChild def getRightChild(self): return self.rightChild def insertLeftChild(self, newNode): if self.leftChild == None: self.leftChild = BinaryTree(newNode) else: t = BinaryTree(newNode) t.leftChild = self.leftChild self.leftChild = t def insertRightChild(self, newNode): if self.rightChild == None: self.rightChild = BinaryTree(newNode) else: t = BinaryTree(newNode) t.rightChild = self.rightChild self.rightChild = t '''Iterative Level Order Traversal of a Binary Tree''' def iterativeLevelOrderTraversal(tree): current = tree queue = [] queue.append(current) while (queue != []): temp = queue.pop(0) print temp.root if temp.getLeftChild(): queue.append(temp.getLeftChild()) if temp.getRightChild(): queue.append(temp.getRightChild()) '''Printing Level Order Traversal in a reverse way''' def printingLevelOrderReverse(tree): stack = [] if tree == None: return 0 else: queue = [] queue.append(tree) while(queue != []): temp = queue.pop(0) stack.append(temp.root) if temp.getLeftChild(): queue.append(temp.getLeftChild()) if temp.getRightChild(): queue.append(temp.getRightChild()) if stack != []: for i in range(len(stack)): print stack.pop() else: return 0 if __name__ == "__main__": r = BinaryTree(5) r.insertLeftChild(6) r.insertRightChild(7) r.leftChild.insertLeftChild(12) r.leftChild.insertRightChild(54) r.rightChild.insertRightChild(63) print "Levelorder traversal of the tree is:", iterativeLevelOrderTraversal(r) print "\n\n" print "Printing level order in a reverse way:", printingLevelOrderReverse(r) print "\n\n"
Author Archives: debanjanbhucs
Size and Height of a Binary Tree
class BinaryTree: def __init__(self, root): self.root = root self.leftChild = None self.rightChild = None def setRoot(self, root): self.root = root def getRoot(self): return self.root def getLeftChild(self): return self.leftChild def getRightChild(self): return self.rightChild def insertLeftChild(self, newNode): if self.leftChild == None: self.leftChild = BinaryTree(newNode) else: t = BinaryTree(newNode) t.leftChild = self.leftChild self.leftChild = t def insertRightChild(self, newNode): if self.rightChild == None: self.rightChild = BinaryTree(newNode) else: t = BinaryTree(newNode) t.rightChild = self.rightChild self.rightChild = t '''recursive process for finding height of a binary tree''' def height(tree): if tree == None: return 0 else: return max(height(tree.leftChild),height(tree.rightChild)) + 1 '''iterative process for finding height of a binary tree''' def heightIterative(tree): height = 0 if tree == None: return 0 queue = [] queue.append(tree) queue.append("NULL") while ( queue != []): root = queue.pop(0) if root == "NULL": if queue != []: queue.append("NULL") height += 1 else: if root.getLeftChild(): queue.append(root.getLeftChild()) if root.getRightChild(): queue.append(root.getRightChild()) return height '''recursive process for finding size of a binary tree''' def size(tree): if tree == None: return 0 else: return size(tree.getLeftChild()) + 1+ size(tree.getRightChild()) if __name__ == "__main__": r = BinaryTree(5) r.insertLeftChild(6) r.insertRightChild(7) r.leftChild.insertLeftChild(12) r.leftChild.insertRightChild(54) r.rightChild.insertRightChild(63) print "Height of the tree is:", height(r) print "\n\n" print "size of the tree is:", size(r) print "\n\n" print "height of the tree is:", heightIterative(r) print "\n\n"
Searching an Element in a Binary Tree
class BinaryTree: def __init__(self, root): self.root = root self.leftChild = None self.rightChild = None def setRoot(self, root): self.root = root def getRoot(self): return self.root def getLeftChild(self): return self.leftChild def getRightChild(self): return self.rightChild def insertLeftChild(self, newNode): if self.leftChild == None: self.leftChild = BinaryTree(newNode) else: t = BinaryTree(newNode) t.leftChild = self.leftChild self.leftChild = t def insertRightChild(self, newNode): if self.rightChild == None: self.rightChild = BinaryTree(newNode) else: t = BinaryTree(newNode) t.rightChild = self.rightChild self.rightChild = t '''Recursive method for searching an element in a tree''' def searchingElementRecursive(tree,element): if tree == None: return False else: if tree.root == element: return True else: temp = searchingElementRecursive(tree.leftChild,element) if temp != 0: return temp else: return searchingElementRecursive(tree.rightChild,element) '''Iterative method for searching an element in a tree''' def searchingElementIterative(tree,element): queue = [] # current = tree queue.append(tree) if tree == None: return False while (queue != []): temp = queue.pop(0) if temp.root == element: return True if temp.getLeftChild(): queue.append(temp.getLeftChild()) if temp.getRightChild(): queue.append(temp.getRightChild()) return False if __name__ == "__main__": r = BinaryTree(5) r.insertLeftChild(6) r.insertRightChild(7) r.leftChild.insertLeftChild(12) r.leftChild.insertRightChild(54) r.rightChild.insertRightChild(63) print "Search for element 63", searchingElementRecursive(r,63) print "\n\n" print "Search for element 36", searchingElementRecursive(r,36) print "\n\n" print "Search for element 63", searchingElementIterative(r,63) print "\n\n" print "Search for element 36", searchingElementIterative(r,36) print "\n\n"
Maximum Element in A Binary Tree
class BinaryTree: def __init__(self, root): self.root = root self.leftChild = None self.rightChild = None def setRoot(self, root): self.root = root def getRoot(self): return self.root def getLeftChild(self): return self.leftChild def getRightChild(self): return self.rightChild def insertLeftChild(self, newNode): if self.leftChild == None: self.leftChild = BinaryTree(newNode) else: t = BinaryTree(newNode) t.leftChild = self.leftChild self.leftChild = t def insertRightChild(self, newNode): if self.rightChild == None: self.rightChild = BinaryTree(newNode) else: t = BinaryTree(newNode) t.rightChild = self.rightChild self.rightChild = t '''recursive way to find the maximum element of a tree''' def maximumElement(tree): max = 0 if tree == None: return else: rootValue = tree.root left = maximumElement(tree.leftChild) right = maximumElement(tree.rightChild) if left > right: max = left else: max = right if rootValue > max: max = rootValue return max '''iterative way to find the maximum element of a tree''' def maximumElementIterative(tree): queue = [] current = tree max = 0 queue.append(tree) if tree == None: return 0 else: while (queue != []): temp = queue.pop(0) if max <= temp.root: max = temp.root if temp.getLeftChild(): queue.append(temp.getLeftChild()) if temp.getRightChild(): queue.append(temp.getRightChild()) return max if __name__ == "__main__": r = BinaryTree(5) r.insertLeftChild(6) r.insertRightChild(7) r.leftChild.insertLeftChild(12) r.leftChild.insertRightChild(54) r.rightChild.insertRightChild(63) print "The maximum element in the tree recursively is:", maximumElement(r) print "\n\n" print "The maximum element in the tree iteratively is:", maximumElementIterative(r) print "\n\n"
Breadth First and Depth First Traversal
Here is the graph that has to be traversed:
'''graph representation''' graph = {1:[2,3], 2:[4,5], 3:[6], 4:None, 5:[7,8], 6:None, 7:None, 8:None} def breadthFirstTraversal(graph,start): visited = [] tobevisited = [start] while len(tobevisited) > 0: currentNode = tobevisited.pop(0) if currentNode not in visited: visited += [currentNode] if graph[currentNode] is not None: tobevisited = tobevisited + graph[currentNode] return visited print breadthFirstTraversal(graph,1) '''Output: [1, 2, 3, 4, 5, 6, 7, 8]'''
def depthFirstTraversal(graph,start): visited = [] tobevisited = [start] while len(tobevisited) > 0: currentNode = tobevisited.pop(0) if currentNode not in visited: visited += [currentNode] if graph[currentNode] is not None: tobevisited = graph[currentNode] + tobevisited return visited print depthFirstTraversal(graph,1) '''Output: [1, 2, 4, 5, 7, 8, 3, 6]'''
Quick Sort
Have a look at this video and learn quick sort with Hungarian Folk Dance.
Here is another very good video that illustrates quick sort.
Here are some different ways of implementing quick sort in Python.
import random from random import randrange mylist = [3,0,1,8,7,2,5,4,9,6] def qsort1(mylist): if mylist == []: return [] else: pivot = mylist[0] lesser = qsort1([x for x in mylist[1:] if x < pivot]) greater = qsort1([x for x in mylist[1:] if x >= pivot]) return lesser + [pivot] + greater print qsort1(mylist) def partition(mylist, l, e, g): while mylist != []: head = mylist.pop(0) if head < e[0]: l = [head] + l if head > e[0]: g = [head]+ g if head == e[0]: e = [head] + e return (l,e,g) def qsort2(mylist): if mylist == []: return [] else: pivot = mylist[0] lesser,equal,greater = partition(mylist[1:],[],list([pivot]),[]) return qsort2(lesser)+equal+qsort2(greater) print qsort2(mylist)
This one works for any randomly chosen pivot element.
def qsort1a(list): def qsort(list): if list == []: return [] else: pivot = list.pop(randrange(len(list))) lesser = qsort([l for l in list if l < pivot]) greater = qsort([l for l in list if l >= pivot]) return lesser + [pivot] + greater return qsort(list[:]) print qsort1a(mylist)
Merge Sort
Learn Merge Sort with Transylvanian Saxon and German Folk dance:
The python code for Merge Sort is as follows:
mylist = [4,2,8,6,0,5,1,7,3,9] def merge(left, right): mergedList = [] i, j = 0, 0 while i < len(left) and j < len(right): if left[i] <= right[j]: mergedList.append(left[i]) i += 1 else: mergedList.append(right[j]) j += 1 mergedList += left[i:] mergedList += right[j:] return mergedList def mergesort(lst): if len(lst) <=1: return lst else: middle = int(len(lst)/2) left = mergesort(lst[:middle]) right = mergesort(lst[middle:]) return merge(left,right) print mergesort(mylist)
Insertion Sort and Shell Sort – the two brothers
A good explanation of insertion sort can be found over here:
I personally like this video a lot:
itemList = [4,28,56,3,89,90,126] def insertion_sort(itemList): for i in range(1,len(itemList)): value = itemList[i] j = i while (j-1 >= 0 and value < itemList[j-1]): itemList[j]=itemList[j-1] j-=1 itemList[j] = value return itemList print insertion_sort(itemList)
You can find a similar video for shell sort:
def shell_sort(itemList): gap = len(itemList)//2 while (gap > 0): for i in range(gap,len(itemList)): value = itemList[i] j = i while (j-gap >= 0 and value < itemList[j-gap]): itemList[j] = itemList[j-gap] j -= gap itemList[j] = value gap //= 2 return itemList print shell_sort(itemList)
Count Sort
A very good explanation of Count Sort is provided by Saurabh over here:
I tried to implement it in the simplest possible way in python.
arr = [1,2,4,5,7,7,8,9,11,13,11,9,14,15,6,5,4,3,2,1,1,0,0,1] def countSort(arr): maxValue = max(arr)+1 print maxValue count = [0]*maxValue for entries in arr: count[entries] += 1 sortedarray = [] for i in range(len(count)): sortedarray += [i]*count[i] return sortedarray
Preorder Traversal of Binary Tree
Here is the code for iterative preorder traversal of binary trees.
'''class implementing binary tree''' '''Binary Tree Class and its methods''' class BinaryTree: def __init__(self, root): self.root = root #root node self.leftChild = None #left child self.rightChild = None #right child #set root node def setRoot(self, root): self.root = root #get root node def getRoot(self): return self.root #get left child of a node def getLeftChild(self): return self.leftChild #get right child of a node def getRightChild(self): return self.rightChild #insert a left child of a node def insertLeftChild(self, newNode): if self.leftChild == None: self.leftChild = BinaryTree(newNode) else: t = BinaryTree(newNode) t.leftChild = self.leftChild self.leftChild = t #insert a right child of a node def insertRightChild(self, newNode): if self.rightChild == None: self.rightChild = BinaryTree(newNode) else: t = BinaryTree(newNode) t.rightChild = self.rightChild self.rightChild = t #recursive function for inorder traversal of binary tree def preOrderTraversalRecursive(tree): if tree == None: return else: print tree.root preOrderTraversal(tree.leftChild) preOrderTraversal(tree.rightChild) #iterative function for inorder traversal of binary tree def preOrderTraversalIterative(tree) stack = [] if tree == None: return stack.append(tree) while(stack != []): node = stack.pop() print node.root if node.getRightChild(): stack.append(node.getRightChild()) if node.getLeftChild(): stack.append(node.getLeftChild()) if __name__ == "__main__": r = BinaryTree(5) r.insertLeftChild(6) r.insertRightChild(7) r.leftChild.insertLeftChild(12) r.leftChild.insertRightChild(54) r.rightChild.insertRightChild(63) print "Preorder traversal of tree recursively is:", preOrderTraversalRecursive(r) print "\n\n" print "Preorder traversal of the tree iteratively is:", preOrderTraversalIterative(r) print "\n\n"